Install Solar at Your Home?

By Russell Lowes, Sierra Club Rincon Group Energy Chair, August 4, 2014

    A year and a half ago my wife, Lhasha, and I took the leap! After 17 years since buying our house, we finally installed solar panels.

Some of the crew members that installed our solar panels, picture by R. Lowes

    This article shows how solar is affordable now. Prices have come down even more, since we installed our solar panels. The costs of owning a solar array to power your home are now far cheaper than buying power from your utilities.
We had done a number of things to get ready for solar. We thought it would be best to first reduce our energy needs, so we engaged in a number of energy and water-saving techniques:

  • Added an evaporative cooler onto our air conditioner, so that we could switch back and forth with this piggyback system – we also put in a barometric damper between the AC and cooler so we would not have to do anything but turn one off and the other on (no getting up on the roof or putting metal sheets in place);

“Piggyback, or dual, evaporative cooler/HVAC system” picture by R. Lowes

  • Had insulation blown in to our attic;
  • Installed insulating blinds;
  • Installed double-pane windows (the noise reduction alone was worth it);
  • Replaced our lawn with desert landscaping and put in a grey-water system on our clothes-washer (with a Watershed Management workshop more water than energy-saving);
  • Replaced our A/C system with a much more efficient HVAC system; and
  • Insulated behind the cabinets on our kitchen cabinets.

    We did all these efficiency things first, to save energy and to reduce the panels we would need to buy. After saving up for solar by late last year, we decided to get three or four quotes. We received quotes from Sungevity, Technicians for Sustainability and Net Zero Solar, and a ballpark quote from Geo Innovation. These quotes were for similar products, and had similar contracts.

    I was hoping to go with Sungevity, because they linked with the Sierra Club in donating $750 to the Club per installation. However, Net Zero Solar in this instance provided the best bid. Their cost, pre-tax reduction and rebate, was $8925 (without the utility rebate, which we signed over to them). Technicians for Sustainability gave a $11,029 quote, and Sungevity gave a $16,910 quote (gross cost, pre-tax benefit reductions).
    So, you might ask, how quickly does solar pay for itself? How good of an investment is it?
    Here is a breakdown of how I would answer this question.
    First, it largely depends upon how you pay for the system. If you are buying the system and are comparing the cost of the system to what you would pay in electric bills, that would require a projected interest rate for a loan, and an electric price prediction.  
    If you are borrowing to buy the system, and are borrowing money at say 6%, it will be different than buying with cash. For my personal approach (after all, it is a personal approach), I do not think that investments will yield very much in the future, as the stock market is very high, so here I focused instead on the electric grid comparison. I also believe our U.S. economic foundation is weak and that we are likely to go into hyper-inflation in several years, similar to the early 1980s. I believe this will increase electricity bills substantially.
    It is important for me to emphasize to you: once you invest in solar, there is a good chance that your investment will be good for well over 25 years. Some solar panels are now still in use after 40 years. Your solar investment is not likely decrease in value like stocks or bonds during an economic downturn. It will keep its value and maybe increase in value if the cost of electricity does what I think it will do.
    This is how I personally approach it. If you are borrowing or leasing, you could come up with a different approach, or you could modify the table below. If you have positive equity in our house, home equity loans are a good way to go. The positive impacts on the environment are matched by the positive impacts on your wallet. Solar energy is economical now.




America has saved more energy than you might think. YOU are saving more energy than you might think.

Saving Energy Comes in Many Forms
“Saving Energy Series, Part I”

by Russell Lowes, April 2, 2011

In 1973, at the height of the OPEC Oil Embargo, America was coming to grips with the concept of limited oil reserves. During that year, all companies, citizens and governments in the U.S. used a total of 77 quads of energy—that is, 77 quadrillion British thermal Units (Btu).(1) 

Thirty-eight years later, the country’s annual consumption is 98 quads,(2) only 27% more than in 1973.

“Wait a minute,” you might ask, “our economy has expanded much more than that, right”?  You would be right. Our economy expanded from $4.93 trillion to about $13.19 trillion. These figures are in 2000 dollars with the inflation adjusted out.(3) Yet, all of the energy that we use as Americans — living in houses, driving everywhere, producing goods and services, governing our nation, states, counties and cities — adds up to just 96 quads, just 27% more than almost 4 decades ago.

That means that we had a 267% increase in economic output, an increase that is radically more than the 27% energy growth.  When you factor in our conversion from a medium manufacturing country in 1973 to a lighter manufacturing country today (manufacturing uses more energy than services) the energy equivalency needs to be adjusted downward. However, still, our improvement in energy consumed per dollar of economic output since 1973 is undeniably impressive.

This is illustrated by the table below.

So how did we do that? How did we increase our economic activity with so little energy expansion? We did so by saving energy. Saving energy falls into two categories: energy conservation through cutbacks in the use of energy, and what I will call energy efficiency, through improving the way goods and services are produced.  This article and the table above, address only energy efficiency.

Energy efficiency includes producing more services like delivering packages around the country for less energy. It also includes producing more goods for the same buck, like reducing the plastic and metal in a radio that performs the same function.

How Are YOU Saving Energy Through Energy Efficiency?

In all likelihood, you are contributing to this increased energy efficiency.  You may not even know that you are buying something that has been manufactured in a way that has improved in efficiency. 

Take the clothes you are wearing. Since 1973, that first year of increased energy awareness in the U.S., clothing has been dyed using more effective technologies, like using electrostatic adherence techniques. That has allowed manufacturers to use less dye, which means producing less dye and reducing all the energy that used to go into manufacturing. You may not have even known it.

On the other hand, if you have changed the type of light bulbs you use, you probably do know that compact florescent lights save about 75% of the energy that old-fashioned incandescent bulbs use. These CFLs have improved in recent years to give better lighting.  For example, the U.S. Government Energy Star-rated CFLs now start out with the same amount of light almost the instant you turn them on, the amount of mercury has been reduced, the light spectrum has improved, and the annoying hum has been eliminated.

Even some power plants have contributed to our energy efficiency gains.  These power plants have increased their thermal efficiency, which means that for every 100 units of heat they produce, they now convert more of that heat to electricity.  That reduces the need to produce so much heat (raw energy production) and pump so much water to cool these plants, which uses a tremendous amount of energy.

With that in mind, below is a graphic of the energy efficiency categories that will be helping America reduce its energy use per dollar of economic activity, or per average item bought. This is a projection of what might happen between now and 2020. The point of presenting this is to show the vast array of efficiency techniques that we both have been using and are still improving upon.

The improvement in energy efficiency since 1973 has saved more energy than all the additional energy expansion since that year. This will continue on into the future, and negate the need for additional power plants and oil consumption for transportation and more.

Above table: McKinsey Report finds that U.S. could save $1.2 trillion through 2020, by investing $520 billion in improvements. Kate Galbraith, “McKinsey Report Cites $1.2 Trillion in Potential Savings from Energy Efficiency,” New York Times, July 29, 2009,


(1)    U.S. Department of Energy, Energy Information Administration,…/All_25th_Anniversary.xls and
(2)    Data360,