Hansen is Wrong about Nuclear Power

Nuclear is a drain on our ability to deal with climate solutions, energy needs.

Dr. James Hansen is dead wrong. He is wrong about nuclear energy being able to make a contribution to solving global warming. He has little or no grasp of the economics of nuclear energy, and that leads him to mistakenly support this doomed option.

Let’s just forget for a moment a key negative aspect of nuclear energy. Let’s assume that there is no greenhouse gas from the nuclear fuel cycle, even though the two lifecycle meta-studies done so far both peg the number at approximately sixty-five grams of carbon dioxide per kilowatt-hour, more than six times that of wind energy.

Let’s focus instead on costs of new reactors in the U.S., which make them infeasible to solve energy and global warming problems. The newer round of reactors Dr. Hansen would like to see are very similar to the last group of reactors finished in the 1980s in at least one aspect – economics. These reactors require giant nuclear steam supply systems, oversized condensers, large plant footprints, huge reactor containment buildings and an insane level of complexity compared to the other options – and even more complexity and construction material than the last round of reactors.

There have been recent proposals for smaller reactors. The U.S. nuclear program started out small and chose to go with larger reactors to reduce cost per kilowatt. The small reactors would just spread out the radioactive waste, relative cost and complexity issues over a wider ground.

Simply put, the nation, and the planet, can neither gain traction against global warming nor solve its energy problems practically and cost effectively, with nuclear energy. The nation and the world would in fact be set back by the extreme additional cost, compared to a better planned energy strategy. That alternative strategy includes solar, wind, energy efficiency, storage and energy management technologies, plus a rapid phase-down of fossil and nuclear energy.

Let’s just forget that an accident like the one at Fukushima can endanger an entire nation’s nuclear energy program. This is where Japan switched from nuclear to mandated energy cut-backs and massive increases in fossil energy use. It is five years later and things still are not back to normal. However, the Japanese have amplified their renewable energy program.

The last significant round of U.S. nuclear construction was completed in 1987. The average reactor was completed for around 3,100 dollars per kilowatt of capacity. See Brice Smith, Insurmountable Risks: The Dangers of Using Nuclear Power to Combat Global Climate Change, found at www.ieer.org/.

That comes to 6,211 dollars per kilowatt of capacity, in 2015 dollars. See http://data.bls.gov/cgi-bin/cpicalc.pl).

***Editor’s note: Dr. James Hansen, the renowned climate change scientist, has said that nuclear power is essential to combat climate change. A number of environmentalists disagree including Lowes and Mainland.***

“This lower-cost clean energy blend would not

only produce less greenhouse gas, but also save

$92 billion/year.” –Russell Lowes

 

Let’s just forget about other issues like national security, and the likelihood that centralized nuclear plants remain vulnerable not only to terrorism and foreign attack but also natural disasters, accidents and operator error. Let’s ignore the Fukushima disaster as well as the damage that some U.S. nukes have already shown in tornados and hurricanes, plus the creeping onset of sea-level rise and storm surges. Let’s also put aside the problem of disposing of long-lived radioactive waste, which is enormously expensive, technologically intractable and probably insoluble.

We’ll just continue on with what 6,211 dollars per kW would cost for one reactor. If we ran this out from this year to 2023, at four percent inflation, the cost per kW would equal 8,173 dollars.

One of us, Russell Lowes, has been accurately projecting nuclear costs since the 1970s (only four percent off on Palo Verde reactors projected in 1978 for 1986 completion). He has come up with twenty-seven reactor construction cost factors, perhaps the most varied list of factors compiled for nuclear construction costs.

The estimate is that the reactors of the early 2020s will cost about twenty percent more in real dollars than the reactors finished in the last big wave of the mid-late 1980s. This considers factors that would make reactors cheaper than in the inflation-adjusted cost of the past, like labor cost declines in America. And it also takes into consideration factors that would increase the costs, like material cost increases, and increases in plant robustness requiring more cement, copper, steel, etc.

If an average U.S. reactor in the future is 1,350 megawatts of capacity, this average nuclear reactor would cost 9,808 dollars per kW in 2023. That’s 13.2 billion dollars per reactor.

 

“When you put a dollar into nuclear, that dollar

would cause only four kWh to be delivered to

ratepayers, versus seven for wind.” –Edward Mainland

 

Assume a higher than average thirty-year capitalization cost, say fourteen percent instead of twelve percent for a typical large fossil plant, due to increased risk (per the Standard and Poor’s ratings agency). The cost per kilowatt-hour just for construction, for an eighty-five percent plant output average, would be 13.8 cents per kWh over forty years.

This would be upped by operation and maintenance costs. See Keystone Report, “Nuclear Power Joint Fact-Finding,” page 42. Add 4.3 cents per kWh for operations and maintenance, plus transmission and distribution of say 7 cents, to deliver the average cost of nuclear energy to 25.1 cents per kWh.

This compares to solar power purchase agreements of 7.5 cents for production, 13.5 cents delivered, with prices continuing to improve. It compares with wind at 3.5 cents, 10.5 cents delivered, and energy efficiency at 3.5 cents. It compares to rooftop solar at about 12 cents delivered with net metering, including on-site transmission and distribution.

Let’s put this on a larger scale. The U.S. spends about one trillion dollars on all energy each year. If it were to build, say, a hundred nuclear reactors, the cost would be about 1.325 trillion dollars for construction. With the interest, operation and maintenance, etc., this would cost ratepayers in the U.S. about 173 billion dollars per year.

This 173 billion dollars is almost half our current annual electricity outlay in the U.S. The equivalent energy produced from solar and wind, and saved from energy efficiency improvements, per kWh, is shown in Table 1.

The 11.8 cent average cost for energy received and saved in the Table 1 energy mix would translate to 81 billion dollars per year, compared to the nuclear option of a hundred plants at 173 billion dollars per year. By the way, this lower-cost clean energy blend would not only produce less greenhouse gas, but also would save 92 billion dollars per year.

We have only a limited amount of dollars to put into energy. When you put a dollar into nukes, you get about four kWh. When you put that dollar into centralized solar, you get about seven kWh. Rooftop solar gets you about eight kWh. Wind delivers about nine kWh. Energy efficiency delivers twenty-nine kWh saved for every dollar spent.

The U.S. has limited capital resources for energy. They shouldn’t be wasted. When you put a dollar into nuclear energy, instead of putting the same dollar into one of the cheaper options, for example wind energy, that dollar would cause only four kWh to be delivered to ratepayers, versus seven for wind. This creates a deficit of three kWh, that now needs to be recovered from this mismanaged dollar.

As Amory Lovins said, “If you buy more nuclear plants you’re going to get about two to ten times less climate solution per dollar and you’ll get it about 20 times slower than if you buy instead the cheaper faster stuff.”

Nuclear energy is plainly a boondoggle, one that is made even more expensive when you consider its subsidy costs, compared to the other options covered here. It would be one thing for James Hansen and others to consider nuclear energy if it gave you extra value, compared to the other options. Instead, it is a financial drain on our ability to deal with climate solutions and energy needs. It is time to nuke the nuclear option.

Russell Lowes is the primary author of the book, “Energy Options for the Southwest, Nuclear and Coal Power.” This was used by citizens creating initiatives at California electric municipalities to cancel Units 4 and 5 at the Palo Verde nuclear plant. Lowes projected a cost of $6.1 billion for the nuclear plant, west of Phoenix, compared to the industry projection of $2.8 billion. The plant came within four percent, at $5.9 billion, perhaps the most accurate projection for a nuclear plant in the U.S. Lowes testified before the Arizona Corporation Commission, as an expert witness on the economics of power plants. Today he heads SafeEnergyAnalyst.org, and is the Energy Subcommittee Chairman for the Southern Arizona Sierra Club Rincon Group.

Edward Mainland is co-founder of Sustainable Novato and currently Secretary of Sustainable Marin, both volunteer groups in Marin County, California that promote long-term community sustainability and local self-reliance. He has been Senior Conservation Fellow at the International Program at national Sierra Club headquarters in San Francisco, and co-chair of California State Sierra Club’s Energy-Climate Committee.

Printed with permission of Public Utilities Fortnightly. See more at: http://www.fortnightly.com/fortnightly/2016/05/nuclear-debate-hansen-wrong-about-nuclear-power#sthash.pPJNnOWu.dpuf

 

Advertisements

America has saved more energy than you might think. YOU are saving more energy than you might think.

Saving Energy Comes in Many Forms
“Saving Energy Series, Part I”

by Russell Lowes, April 2, 2011

In 1973, at the height of the OPEC Oil Embargo, America was coming to grips with the concept of limited oil reserves. During that year, all companies, citizens and governments in the U.S. used a total of 77 quads of energy—that is, 77 quadrillion British thermal Units (Btu).(1) 

Thirty-eight years later, the country’s annual consumption is 98 quads,(2) only 27% more than in 1973.
 

“Wait a minute,” you might ask, “our economy has expanded much more than that, right”?  You would be right. Our economy expanded from $4.93 trillion to about $13.19 trillion. These figures are in 2000 dollars with the inflation adjusted out.(3) Yet, all of the energy that we use as Americans — living in houses, driving everywhere, producing goods and services, governing our nation, states, counties and cities — adds up to just 96 quads, just 27% more than almost 4 decades ago.

That means that we had a 267% increase in economic output, an increase that is radically more than the 27% energy growth.  When you factor in our conversion from a medium manufacturing country in 1973 to a lighter manufacturing country today (manufacturing uses more energy than services) the energy equivalency needs to be adjusted downward. However, still, our improvement in energy consumed per dollar of economic output since 1973 is undeniably impressive.

This is illustrated by the table below.


So how did we do that? How did we increase our economic activity with so little energy expansion? We did so by saving energy. Saving energy falls into two categories: energy conservation through cutbacks in the use of energy, and what I will call energy efficiency, through improving the way goods and services are produced.  This article and the table above, address only energy efficiency.

Energy efficiency includes producing more services like delivering packages around the country for less energy. It also includes producing more goods for the same buck, like reducing the plastic and metal in a radio that performs the same function.

How Are YOU Saving Energy Through Energy Efficiency?

In all likelihood, you are contributing to this increased energy efficiency.  You may not even know that you are buying something that has been manufactured in a way that has improved in efficiency. 

Take the clothes you are wearing. Since 1973, that first year of increased energy awareness in the U.S., clothing has been dyed using more effective technologies, like using electrostatic adherence techniques. That has allowed manufacturers to use less dye, which means producing less dye and reducing all the energy that used to go into manufacturing. You may not have even known it.

On the other hand, if you have changed the type of light bulbs you use, you probably do know that compact florescent lights save about 75% of the energy that old-fashioned incandescent bulbs use. These CFLs have improved in recent years to give better lighting.  For example, the U.S. Government Energy Star-rated CFLs now start out with the same amount of light almost the instant you turn them on, the amount of mercury has been reduced, the light spectrum has improved, and the annoying hum has been eliminated.

Even some power plants have contributed to our energy efficiency gains.  These power plants have increased their thermal efficiency, which means that for every 100 units of heat they produce, they now convert more of that heat to electricity.  That reduces the need to produce so much heat (raw energy production) and pump so much water to cool these plants, which uses a tremendous amount of energy.

With that in mind, below is a graphic of the energy efficiency categories that will be helping America reduce its energy use per dollar of economic activity, or per average item bought. This is a projection of what might happen between now and 2020. The point of presenting this is to show the vast array of efficiency techniques that we both have been using and are still improving upon.

The improvement in energy efficiency since 1973 has saved more energy than all the additional energy expansion since that year. This will continue on into the future, and negate the need for additional power plants and oil consumption for transportation and more.


Above table: McKinsey Report finds that U.S. could save $1.2 trillion through 2020, by investing $520 billion in improvements. Kate Galbraith, “McKinsey Report Cites $1.2 Trillion in Potential Savings from Energy Efficiency,” New York Times, July 29, 2009,

————

(1)    U.S. Department of Energy, Energy Information Administration, http://www.eia.doe.gov/…/All_25th_Anniversary.xls and http://www.eia.doe.gov/totalenergy/data/monthly/pdf/mer.pdf
(2)    Data360, http://www.data360.org/dataset.aspx?Data_Set_Id=354